
March 2001 The Delphi Magazine 67

Beating The System: Taming
The Windows Desktop, Part 1
by Dave Jewell

For some while now, the Editor
has been nagging me to write an

article about the Windows desk-
top. I originally discussed the desk-
top some while ago in The Delphi
Magazine, but I didn’t cover the
all-important issue of how to
programmatically arrange or re-
arrange desktop icons from a
Delphi application. For reasons
that will become obvious as you
read through this article, such
things aren’t as trivially easy as
they ought to be, thanks largely to
the memory protection mecha-
nisms built into Windows.

But why would you want to do
this? Anyone who has experienced
a major system crash (and, as soft-
ware developers, we tend to expe-
rience more than most!) will know
that Windows has a nasty habit of
resetting the position of all the
icons on your desktop after certain
types of crash have occurred. This
was a problem under Windows 95
and 98, it’s still a problem under
Windows ME, and it most definitely
also happens under Windows 2000
and beta versions of Whistler.

System crashes aside, you might
inadvertently select one of the
Arrange Icons commands from the
desktop window’s right-click con-
text menu: it doesn’t have an Undo
option! Also, application develop-
ers frequently like to check out the
appearance of their program at a
variety of screen resolutions. Here
again, the oh-so-helpful Windows
Explorer obligingly comes along
and silently rearranges your desk-
top icons whenever the size of the
desktop changes, meaning that
you’ve got to go through the
tedious process of putting them
back where they were once you
return the screen resolution to
normal.

There are a number of share-
ware utilities around which will
take a ‘snapshot’ of your desktop

icon positions, and restore the
original layout on demand, one
such example being something
called 12Ghosts SaveLayout, one of
several utilities contained within
the 12Ghosts package. This article
is intended to show you how to
create similar functionality from
within a Delphi application.

But I’m Not
Interested In The Desktop!
Even if you’re not much interested
in programmatically controlling
the desktop icons, I’d encourage
you to read this article. This is
because it demonstrates a much
more general technique called DLL
injection. In other words, how to
‘inject’ a DLL into the address
space of another, separate, Win-
dows process. This is a powerful
technique which, in special cir-
cumstances, can be used to break
down the barriers between differ-
ent processes, each running in its
own address space. This technique
can be useful for writing debugging
or ‘spy’ tools, and for creating spe-
cialised utilities which tweak the
operating system or other applica-
tions in various ways.

With that as an introduction,
let’s start at the beginning by
reviewing the implementation of
the Windows desktop. Start Delphi,
click the Win32 tab on your compo-
nent palette and add a TListView
control to your form. You’ll notice
that the default value of the
ViewStyle property is vsIcon. If you
bring up the online help for vsIcon,

you will see that it states: ‘Each
item appears as a full-sized icon
with a label below it. The user can
drag the items to any location in the
list view window.’ Hmm... that
sounds a bit like the Windows
desktop, doesn’t it? Sure enough,
this is exactly how Microsoft
chose to implement the desktop,
using a listview control. Of course,
I’m not suggesting that the desktop
is based around a Delphi control!
It’s important to remember that
TListView is just a wrapper around
the listview implementation con-
tained within COMCTL32.DLL, and
it’s this underlying window class in
the common controls library
which implements the desktop.

Before we can do anything with
the desktop, we need to get the
API-level handle of this listview
control. Fortunately, this is quite
easy to do, one possible implemen-
tation being shown in Listing 1.

This routine starts out by
searching the list of top-level win-
dows for a window which has a
class name of ProgMan. This corre-
sponds to the Windows Explorer
itself, also known as the Windows
shell. Once upon a time, Explorer
was known as Program Manager
and, for reasons of backward com-
patibility, Microsoft chose to
retain the same class name when
rewriting the shell for Windows 95.

Once we’ve got the shell’s top-
level window, we can easily obtain
the window handle of the desktop.

// Get a window to the ListView control which implements the desktop
function GetDesktopListView: HWnd;
var
buff: array [0..255] of Char;

begin
Result :=
GetWindow (GetWindow (FindWindow ('ProgMan', Nil), gw_Child), gw_Child);

if Result <> 0 then begin
GetClassName (Result, buff, sizeof (buff));
if buff <> 'SysListView32' then Result := 0;

end;
if Result = 0 then
raise Exception.Create ('Desktop ListView control not found');

end;

➤ Listing 1



68 The Delphi Magazine Issue 67

It’s simply the ‘grandchild’ of the
window handle we’ve got. In other
words, the desktop listview
window handle is simply the first
child of the first child of the
Explorer window. We can retrieve
this handle by calling the API
routine GetWindow twice, passing
gw_Child in both cases.

For the technically curious, you
might be wondering what the
intermediate child (as opposed
to grandchild) window is. The
class name of this window is
SHELLDLL_DefView and Microsoft
refer to it as the shell view router.
You can read more, a lot more,
about the internal implementation
of the Windows desktop at

http://msdn.microsoft.com/
library/techart/webview.htm

This is a fascinating MSDN article
by Dino Esposito, who seems to
have become something of a guru
in the field of shell desktop
programming.

Returning to my GetDesktop-
ListView routine, you will see that
it includes an important sanity
check. Taking the listview window

handle, it calls GetClassName to
ensure that this really is the handle
of a listview control. If it isn’t, then
the function bottles out with an
exception. I’ve tested this code
under Windows 2000, and Win-
dows 98, and it works fine in both
environments.

One Man’s Pointer
Is Another Man’s Poison
OK, so we’ve got a handle to the
desktop listview control. What can
we do with it? As it stands, not a
great deal! For sure, you can do
one or two straightforward things,
such as determining how many
items are on your desktop. Here’s
how to do this:

NumItems :=
ListView_GetItemCount(
GetDesktopListView);

The ListView_GetItemCount rou-
tine, incidentally, is defined inside
the CommCtrl unit. It works by send-
ing a LVM_GETITEMCOUNT message to
the control via SendMessage. This
works, and if you care to count up
all your desktop items, you’ll see
that it’s accurate.

Amusing though this all is, what
we really want to do is examine the
individual desktop items, figure
out what captions they have,
change their position, and so forth.
And that’s where we come
unstuck! Consider the ListView_-
GetItemText routine, whose proto-
type is:

function ListView_GetItemText(
hwndLV: HWND; i, iSubItem:
Integer; pszText: PAnsiChar;
cchTextMax: Integer):
Integer;

As arguments, this routine takes
the window handle of our listview
control, an integer which desig-
nates the item we’re interested in
and a sub-item parameter which
should be set to zero to get the
item’s text. It also receives a
pointer to a buffer to receive the
text string, and an indication of the
buffer size as the final parameter.
Unfortunately, when we call this
routine, the desktop listview will
stubbornly refuse to give us the
text we’re after.

The problem, of course, is that
we’re trying to pass a pointer to a
window that we don’t own and
didn’t create: we’re trying to pass a
pointer to a different process in
another address space. The
address of the passed character
buffer might make sense to us, but
it doesn’t make sense to Windows
Explorer, and it’s within the con-
text of Explorer that this control is
executing. Within the guts of
Windows, the code determines
that the passed address isn’t valid
and simply ignores our request.

The somewhat counter-intuitive
solution to this problem is to use a
technique called DLL injection. I’m
not 100% sure where this terminol-
ogy comes from, but I believe it’s
due to Jeffrey Richter who
describes the technique in his
excellent book, Advanced Windows
published by Microsoft Press. This
follows on from earlier work which
he published in the Microsoft
Systems Journal.

Basically, the idea is to create a
DLL which is invoked from our
own application. Once invoked, it
searches for and finds the desktop

➤ Figure 1: 12Ghosts SaveLayout (from www.12ghosts.com) is an
example of a shareware application which, broadly speaking,
does the same sort of thing as discussed here, injecting its own
DLL into the address space of Explorer.



March 2001 The Delphi Magazine 69

listview control referred to earlier.
It then installs a Windows message
hook, hooking the thread which
owns the listview thread. This will
obviously correspond to a thread
inside the Explorer process itself.
The key thing here is to ensure that
the message handling function is
located inside the DLL. This has
the effect of ‘pulling’ the DLL into
the process space of the hooked
application, in this case Windows
Explorer.

Once our DLL is executing within
the context of the Explorer, we can
then communicate with the desk-
top tree list control just as easily as
if we’d created it ourselves. Effec-
tively, the DLL has become a sort of
go-between, connecting our own
application with Explorer’s
address space. That’s a very brief
overview, but there’s rather more
to it than that, as we shall see.

Quiche Eaters:
Cover Your Eyes!
This particular issue of Beating The
System is unusual in more ways
than one, not least because I’ve
been forced into the position of
using a DLL that wasn’t written in
Delphi! That’s right: much of the
code described below is based
around Jeffrey Richter’s original
DLL which was written using Visual
C++. What justification could I have
for polluting this august publica-
tion with C++ code? Read on.

I’m a dedicated Delphi zealot and
I’d go so far as to say that, 99% of
the time, Delphi will do everything
that Visual C++ can do, and it’ll do it
a lot more quickly and elegantly.
But, every so often, one comes up
against that stubborn 1%, and
when you do, there’s sometimes
no option but to reach for a C/C++
compiler. If you look at the source
code for Jeff’s original DLL code,
you’ll find the interesting looking
snippet in Listing 2.

This is probably pure gobbledy-
gook to the average Delphi devel-
oper, so I’ll walk you through what
it means. The first statement is a
pragma, somewhat like the ability
to embed compiler directives into
a Delphi application. In this case,
the pragma is telling the compiler
that any data variables declared
from this point on should be
placed into a new data segment (or
‘section’, in 32-bit programming
terminology). At the same time, the
pragma allows us to specify a new
name for our custom section, in
this case Shared.

This is followed immediately by
the definition of a couple of global
variables. Both of these variables
get placed into the Shared data

section. For the moment, we won’t
worry too much about what these
variables are there for. After these
two declarations, we see another
pragma, this time without an
accompanying section name. This
causes the compiler to restore the
status quo, placing subsequent
variables back in the default data
section.

But wait, there’s more! The final
pragma statement introduces an
embedded linker command in the
form of a comment. When the
Visual C++ development environ-
ment builds the DLL, it finds this
command and appends it to the list
of directives that are fed to the
Microsoft linker. In this case, the
directive tells the linker that the
Shared section is to be created
using the read, write and shared
attributes. That’s the meaning of
the, somewhat terse, rws string
within the comment.

So, the net effect of all these
hieroglyphics is to create a new
section which contains only the
g_hhook and g_dwThreadIdDIPS vari-
ables. At the same time, the sec-
tion is marked as being not only
read and write, but also shared,
and it’s the shared attribute which
is the important one. Remember I
said that the DLL gets loaded into
the process space of Windows
Explorer and our Delphi applica-
tion? Ordinarily, when an applica-
tion loads a DLL, it receives a
completely new data segment. But
in this case, we want to be able to
share certain variables, making
them available when the DLL is
called from within the context of
our application, and when it’s
called by Explorer.

But hang on a minute, Dave,
Explorer knows nothing about our

#pragma data_seg("Shared")
HHOOK g_hhook = NULL;
DWORD g_dwThreadIdDIPS = 0;
#pragma data_seg()
// Instruct the linker to make the Shared section
// readable, writable, and shared.
#pragma comment(linker, "/section:Shared,rws")

➤ Above: Listing 2 Below: Listing 3

#pragma data_seg("Shared")
HHOOK g_hhook = NULL;
DWORD g_dwThreadIdDIPS = 0;
#pragma data_seg()
// Instruct the linker to make the Shared section
// readable, writable, and shared.
#pragma comment(linker, "/section:Shared,rws")

➤ Figure 2: Here's the proof of
the pudding. This screenshot
(taken from a process viewer
application) shows DISPLIB.DLL
as a loaded module within the
Explorer process.



70 The Delphi Magazine Issue 67

DLL, so how does it get to call the
thing? That’s why I mentioned the
need to hook the message queue of
the thread belonging to the
desktop listview control. Once
we’ve done that, then Explorer is
essentially calling into our DLL
each time it processes a message
for the Windows desktop.

It’s worth pointing out that when
we call a routine in this shared DLL
we can’t just expect to dive into the
routine and start mucking about in
the address space of Explorer. The
key word is context. When called
from our app, we’re running in the
application’s context. When called
from Explorer, the DLL is running
in Explorer’s context.

In order to get useful informa-
tion from the desktop listview, we
have to call the DLL from the
Delphi application, posting a
message to the thread which owns
the listview and passing the
address of a shared buffer which
will receive any relevant infor-
mation. This message is then ser-
viced by Explorer, causing our
message hook to be invoked and
allowing the relevant information
to be posted back to the shared
buffer.

But I’m jumping ahead of myself.
The real reason why this DLL has
to be written in C/C++ is because
Delphi, unfortunately, doesn’t give
us anything like the same level of
control when it comes to creating

custom sections, marking them as
shareable and so forth. Sad, but
true.

A Walk On The Wild Side
The little program on this month’s
disk comes in two parts. DeskApp
is an application built with Delphi
5, and DIPSLIB.DLL is a slightly
massaged version of the DLL devel-
oped by Jeffrey Richter. So let’s roll
up our sleeves and take a tour of
the code. The application’s Form-
Create handler begins by loading
the shared DLL, raising an excep-
tion if it can’t be found. This is
immediately followed by a call to
SetDIPSHook, the code for which is
given in Listing 3.

As an argument, this routine is
passed a thread ID which is
retrieved from the GetDesktop-
Thread function, which uses the
Windows API routine GetWindow-
ThreadProcessID to retrieve the ID
of the Explorer thread which is
responsible for the desktop list-
view control. Inside SetDIPSHook
we retrieve the address of the cor-
responding DLL function and call
it, passing the required thread ID.

Inside the DLL (consult the C++
source code) the SetDIPSHook rou-
tine does one of two things depend-
ing on whether or not the supplied
thread ID is non-zero. Assuming it’s
non-zero, the library code calls
GetCurrentThreadId to retrieve the
ID of the calling thread. This will

obviously be the main thread ID of
our Delphi application since we’ve
just called into the DLL. Next, it
uses the SetWindowsHookEx routine
to hook into the message queue of
the Explorer thread that owns the
list view, passing the instance
handle of the DLL module itself. At
this point, the DLL hasn’t yet been
mapped into the address space of
Explorer, but it’s about to be.

If everything went OK, the
library code uses PostThread-
Message to post a WM_NULL message
to the Explorer thread, and it then
exits, flagging success as the func-
tion result. This call to Post-
ThreadMessage is very subtle:
remember that at this point we’re
still running in the context of the
Delphi application which loaded
the DLL. Once that initial WM_NULL
message is about to be processed,
the Windows kernel is forced to
load the DLL into the process
address space of Explorer. You
can see this very clearly in Figure
2, which shows the list of loaded
modules with Explorer’s address
space.

Back inside the DLL, the WM_NULL
message arrives at the GetMsgProc
routine. This code contains a
static variable, fFirstTime, which
causes a hidden dialog window to
be created on the first access to
GetMsgProc. Once the dialog is cre-
ated (remember, we’re running in
Explorer’s context now), the code
posts another WM_NULL message
back to the original Delphi applica-
tion using the thread ID that was
stored when the library was first
loaded. This is used to tell the
application that the DLL is now
initialised and open for business.

Back in the Delphi executable,
the FormCreate code calls Get-
Message, waiting for that magic
WM_NULL message to arrive. Bear in
mind that it would be a very bad
idea to replace that GetMessage call
with a reference to (say) Applica-
tion.ProcessMessages. The Delphi
application has to be blocked until
the WM_NULL message arrives
whereas Application.Process-
Messages is a non-blocking call: it
will return immediately if the
message hasn’t arrived yet. If the
subsequent FindWindow call were to

➤ Figure 3: Jeffrey Richter's DLL stores desktop layout information into
the Windows registry. Coming up with a more general storage
mechanism is one of the things we'll be looking at next time.



March 2001 The Delphi Magazine 71

execute before the DLL was ready, then the hDeskWin
variable could end up as Nil, and that would be very
bad news indeed.

This FindWindow call looks for a top-level window with
a caption name of Delphi Desktop 2001, corresponding
to the hidden dialog window that is created on the
‘Explorer side’ of the DLL. Because this dialog is exe-
cuting in Explorer’s context, we can send messages to
it, and it will immediately be able to do anything it likes
with the desktop listview because the listview control
exists in the same process space. This is illustrated by
the way in which Jeffrey Richter has implemented a
couple of ‘commands’ which are piggy-backed onto the
WM_APP message. By sending these messages from our
Delphi application, we can cause the Windows desktop
to be automatically saved and restored on demand.

The Full Enchilada
If you want to play with the code on this month’s disk,
go ahead, but be warned that this is a work in progress.
The current implementation seems to work well under
Windows 98 and Windows 2000, but I haven’t tested it
on any other platforms. I would especially caution you
against trying to run multiple copies of the Delphi
application, or using it in conjunction with another util-
ity which hooks the Windows desktop in the way it is
done here.

Of course, as Delphi programmers, we are used to a
lot more functionality than this! For sure, it’s nice being
able to load and save the entire desktop on demand,
and do it programmatically from a Delphi application,
but wouldn’t it be nice if we could, for example, retrieve
the caption of a selected desktop item, move a particu-
lar item to a certain screen location and so forth. This,
of course, is exactly what we’ll be doing next month
when I’ll add a lot more functionality to our embryonic
desktop interface and wrap the whole thing up into an
easy to use Delphi component. So stay tuned...

Dave is a freelance consultant, programmer and tech-
nical journalist specialising in system-level Windows
programming and cross-platform issues. He is the
Technical Editor of The Delphi Magazine. You can
contact Dave at TechEditor@itecuk.com

➤ Figure 4: The story so far. Next month we'll add a
lot more bells and whistles to the testbed app.


	But I'm Not Interested In The Desktop!
	One Man’s Pointer Is Another Man's Poison
	Quiche Eaters: Cover Your Eyes!
	A Walk On The Wild Side
	The Full Enchilada

